Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
null (Ed.)Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially saturated sandy soils during earthquake shaking and has caused significant distress to overlying and nearby structures, to include the 2007, Mw6.6 Niigata-ken Chuetsu-oki, Japan earthquake. Of specific interest to this study is the seismic compression that occurred during this event at the Kashiwazaki-Kariwa Nuclear Power Plant (KKNPP) site. What makes this case history of particular value is that the motions at the site were recorded by a free-field downhole array (Service Hall Array, SHA) and the magnitude of the seismic compression was accurately determined from the settlement of soil around a vertical pipe housing one of the array seismographs. The seismic compression at the site was ~10-20 cm. The profile at the site was well characterized by in-situ tests and laboratory tests performed on samples from the site, which allows seismic compression models to be calibrated. The study presented herein compares the predictions of the simplified and non-simplified forms of the expanded Byrne model. The predictions are in good accord with field observations, but the slight under-prediction by the non-simplified model may relate to estimated soil properties, assumed orientation of the ground motions and accounting for multidirectional shaking, and/or the numerical site response analyses used to compute the variation of the shear strains during shaking at depth in the soil profile.more » « less
-
null (Ed.)Seismic compression is the accrual of contractive volumetric strain in unsaturated or partially saturated sandy soils during earthquake shaking and has caused significant distress to overlying and nearby structures. The phenomenon can be well-characterized by load-dependent, interaction macro-level fatigue theories, which means that the nature of the accumulation of volumetric strain is a function of the absolute amplitude and sequencing of pulses in the loading function. One model that captures this behavior and that can be used to predict seismic compression is the expanded Byrne cyclic shear-volumetric strain coupling model. However, one potential implication of the load-dependent, interaction macro-level fatigue behaviour is that ground motion orientation will influence predicted settlements. To examine the significance of this, the seismic compression that occurred at the Kashiwazaki-Kariwa Nuclear Power Plant (KKNPP) site during the 2007, Mw6.6 Niigata-ken Chuetsu-oki, Japan, earthquake is analyzed using the expanded Byrne model. The horizontal motions recorded at the site by a down-hole array during this event are rotated in 5° increments and the predicted settlements due to seismic compression are computed. The predicted settlements range from 12.3 to 16.1 cm, with a geometric mean of the values for various orientations being 13.8 cm. These results are in general accord with the post-earthquake field observations and highlight the sensitivity of predicted magnitude of the seismic compression to ground motion orientation.more » « less
-
J.P. Hambleton, R. Makhnenko (Ed.)ASCE 7-16 details how the peak ground acceleration (PGA) should be determined for evaluating liquefaction triggering, with this PGA reflecting the influence of a range of earthquake magnitudes on a site’s seismic hazard. Similarly, the Finn and Wightman magnitude-weighting scheme can be used to account for the full range of magnitudes influencing the seismic hazard at a site, where the weights are derived from a site’s seismic hazard deaggregation data. However, the deaggregation data for the seismic hazard maps for the Central/Eastern U.S. are only available for rock motions and not motions at the surface of the soil profile. The authors explore this issue by comparing the weighted average magnitude scaling factors (MSF) and depth-stress weighting factor (rd) values for multiple sites in the Western U.S. developed using deaggregation data for rock motions and for motions at the surface of the soil profiles. Based on these comparisons, the authors found that using the PGA deaggregation data for rock conditions yield similar weighted averages for MSF and rd as those computed using deaggregation data for the PGA at the surface of the soil profile.more » « less
-
Despite its fundamental basis and many positive attributes, the cyclic strain approach has not been embraced by practice for evaluating liquefaction triggering. One reason for this may be the need to perform cyclic laboratory tests to develop a relationship among excess pore water pressure, cyclic strain amplitude, and number of applied strain cycles. Herein an alternative implementation of the strain-based procedure is proposed that circumvents this requirement. To assess the efficacy of this alternative implementation, Standard Penetration Test field liquefaction case histories are evaluated. The results are compared with both field observations and with predictions from a stress-based procedure. It was found that the strain-based approach yields overly conservative predictions. Also, a potentially fatal limitation of the strain-based procedure is that it ignores the decrease in soil stiffness due to excess pore pressure when representing the earthquake loading in terms of shear strain amplitude and number of equivalent cycles.more » « less
An official website of the United States government

Full Text Available